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Abstract

We study three methods for solving the Cauchy problem for a system of non-linear hyperbolic balance laws with initial
condition consisting of two smooth vectors, with a discontinuity at the origin, a high-order Riemann problem. Two of the
methods are new; one of the them results from a re-interpretation of the high-order numerical methods proposed by Har-
ten et al. [A. Harten, B. Engquist, S. Osher, S.R. Chakravarthy, Uniformly high order accuracy essentially non-oscillatory
schemes III, J. Comput. Phys. 71 (1987) 231–303] and the other is a modification of the solver in [E.F. Toro, V.A. Titarev,
Solution of the generalised Riemann problem for advection-reaction equations, Proc. Roy. Soc. London A 458 (2002) 271–
281]. A systematic assessment of all three solvers is carried out and their relative merits are discussed. We also implement
the solvers, locally, in the context of high-order finite volume numerical methods of the ADER type, on unstructured
meshes. Schemes of up to fifth order of accuracy in space and time for the two-dimensional compressible Euler equations
and the shallow water equations with source terms are constructed. Empirically obtained convergence rates are studied
systematically and, for the tests considered, these correspond to the theoretically expected orders of accuracy. We also
address the question of balance between flux gradients and source terms, for steady flow. We find that the ADER schemes
may be termed asymptotically well-balanced, in the sense that the well-balanced property is attained as the order of the
method increases, and this without introducing any ad-hoc fixes to the schemes or the equations.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is concerned with methods to solve the Cauchy problem for general systems of non-linear hyper-
bolic equations with source terms and initial conditions consisting of two smooth vectors, typically made up of
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polynomials of arbitrary degree, separated by a discontinuity at the origin. This Cauchy problem is a gener-
alization of the classical Riemann problem, which we define as the Cauchy problem for a system of homoge-
neous conservation laws, with initial condition consisting of two constant states separated by a discontinuity at
the origin. A method of solution for this classical Riemann problem was put forward by Godunov [15], who
was the first to use the solution of this problem, locally, to construct his first-order upwind numerical scheme.
Today there exists a wide variety of approaches for solving this classical Riemann problem, exactly and
approximately. Many of these methods are studied, for example, in [41]. This paper is concerned with the
high-order Riemann problem, a generalization of the classical Riemann problem.

The classical Riemann problem can be generalized in a number of ways of which two are the most common:
(i) generalization of the equations by adding source terms, for example, and (ii) generalization of the initial
conditions, to include piece-wise smooth data. The pioneering work of Liu [27] for hyperbolic systems con-
tained elements of both types of generalizations; Liu used his method to prove global existence of solutions.
Later Fok [12] used the Liu solver in a numerical setting using the Random Choice Method. Fok’s work was
subsequently improved by Glimm and collaborators [14], who incorporated a more accurate solution of the
generalized Riemann problem. We remark that in order to apply the solution to the Random Choice Method
it is necessary to know the solution in a certain region of space and time. Thus the solution procedure is much
more involved than that for use in most Godunov-type methods, for which one only requires the solution at
the position of the initial discontinuity, the interface. See the related work of Men’shov [28]. In this paper we
are interested in the solution of the generalized Riemann problem at the interface, as a function of time, and
this defines a different direction of the research.

Regarding the generalization of the initial conditions in the classical Riemann problem, the simplest case is
that in which these consist of two vectors of first degree polynomials (piece-wise linear data) separated by a
discontinuity at the origin. This generalization of the classical Riemann problem has been extensively used, for
more than three decades, to construct Godunov-type schemes of second order of accuracy. See for example the
pioneering work of Ben-Artzi and Falcovitz [1]. In [2] the authors provide a very comprehensive study of this
Cauchy problem as well as its use for constructing second-order Godunov-type methods; see also their more
recent related works on the subject [3,4]. In the numerical literature this, homogeneous, Cauchy problem with
piece-wise linear data has been termed the generalized Riemann problem, or GRP. Other related works on the
GRP are [29,47,1,48,6,5,28,39–41,2].

The terminology generalized Riemann problem has also been used to mean the still more general Cauchy
problem with piece-wise smooth initial conditions, typically two vectors of polynomials of arbitrary degree.
See for example the works of [24,16,25,26], and references therein. A still more general Riemann-type problem
is that in which the governing non-linear equations have source terms and the initial conditions are piece-wise
smooth. This Cauchy problem was considered in [44,46], for which a semi-analytical method of solution was
proposed; they called this Cauchy problem the Derivative Riemann Problem, or DRP and generalizes the follow-
ing simpler cases: (a) non-linear inhomogeneous equations and piece-wise constant initial conditions; (b) non-
linear homogeneous equations and piece-wise linear initial conditions; (c) non-linear homogeneous equations
and piece-wise smooth initial conditions.

The method of [44,46] to solve the Derivative Riemann Problem has its origin in a simplified version,
first communicated in [39,40], of the GRP method of Ben-Artzi and Falcovitz [1]. The resulting simplified
second-order scheme was termed the Modified GRP scheme, or MGRP, in [40]. The difference between the
GRP scheme of Ben-Artzi and Falcovitz and the MGRP of Toro is in the way the second term of the
asymptotic expansion is calculated. In the MGRP (i) one uses the Cauchy–Kowalewski procedure to
express time derivatives in terms of space derivatives and (ii) one then solves a (classical) linear Riemann
problem for the first-order space derivative of the vector of unknowns, at the origin. An extension of the
MGRP approach, that involves the solution of linear Riemann problems for the space derivatives, to lin-
ear homogeneous system with piece-wise smooth polynomial data was reported in [42]. The solution of
these local Cauchy problems were used to construct high-order numerical methods for one, two and three
space dimensions, in Cartesian geometries; implementations included schemes of upto 10th order of accu-
racy in space and time for the one and two-dimensional linear advection equation. The authors in [42]
called the resulting high-order numerical methods: ADER (Arbitrary Accuracy DERivative Riemann
problem).
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The method of [44,46] generalizes that of [40,42] and applies to non-linear systems with source terms and
piece-wise smooth initial conditions, such as polynomials of arbitrary degree. One begins by first expressing
the time-dependent solution at the interface as an asymptotic expansion of order K, as done for example in
[25]. The leading term of the expansion is the solution of a classical, usually non-linear, Riemann problem with
initial conditions consisting of the limiting values (constant) from either side of the discontinuity. This part is
identical to the GPR scheme of Ben-Artzi and Falcovitz [1] and the MGRP scheme of Toro [40]. The proce-
dure to determine the higher order terms follows the MGRP approach. One first uses the Cauchy–Kowalewski
procedure to express time derivatives in terms of functions (or functionals) whose arguments are spatial deriv-
atives of the vector of unknowns. We note that in the presence of source terms, these are included in the Cau-
chy–Kowalewski procedure. Then the problem is that of determining the arguments of these functionals,
spatial derivatives. In order to define the spatial derivatives one first constructs new evolution equations for
these and then solves additional, classical, Riemann problems for spatial derivatives of the desired order.
The solutions of these classical Riemann problems define all spatial derivatives at the interface and thus
the arguments of the functionals are determined. The complete solution is then built up by evaluating the func-
tionals of spatial derivatives and assembling the complete series. In this manner the method of solution of
order K boils down to solving 1 classical non-linear Riemann problem for the leading term and K classical
linear Riemann problems for spatial derivatives. The described procedure leads to the determination of
numerical fluxes, which include the influence of the source terms, if present in the original equations. To fully
account for the presence of source terms in a numerical method one requires additionally the evaluation of a
volume integral to high order of accuracy, consistent with that for the flux. Analogous methods to those
described for the flux are applied to determine the integrand of the volume integral.

Numerical methods of arbitrary order of accuracy can be constructed as a straight generalization of Godu-
nov’s first order method, by using the solution of the DRP at the interface. These methods were called ADER
methods in [42]. For computed solutions with a (pre-assigned) relatively large error, it is unclear as to whether
it is more efficient to use a low order method on a fine mesh or a high-order method on a coarse mesh. How-
ever, for computing a solutions with a small (pre-assigned) error it is distinctly more efficient to use high-order
methods, and by a huge margin. See the work of Dumbser et al. [10]. Corresponding schemes for non-linear
systems based on the DRP solver in [44], were reported in [37,45,38]. Further developments of ADER schemes
are reported in [36,32,21,33,22,31,23,9,7,11].

The present paper is motivated by a number of issues. First, it appears necessary to examine more closely
the quality of the approximate solutions produced by the existing DRP solver of Toro and Titarev [44], for the
case of non-linear systems. In addition, we have recently identified a class of problems for which this DRP
solver may experience some difficulties. The problems in question include, locally, a stationary discontinuity,
a shock wave or a contact wave, for which the DRP expansion of [44] may be non-unique, giving rise to a non-
unique choice of intercell numerical flux. At the level of the first-order scheme the choice is unique due to the
Rankine–Hugoniot conditions that ensure the continuity of the flux; that is, the flux is the same whether taken
from the left or from the right of the interface. For the high-order schemes the fluxes are different. We also
present new DRP solvers and discuss their relative performance, at the local level, as well as a means to pro-
vide a numerical flux for high-order methods. The high-order method proposed by Harten, Engquist, Osher
and Chakravarthy [17], after a minor modification, may be interpreted in the frame of the ADER methods.
That is, we could define an associated derivative Riemann problem with a corresponding method to solve it.
We call the resulting method the HEOC solver, which in its re-interpreted version includes source terms. In
this paper we also propose a new solver; this is a modification of that of Toro and Titarev [44]. The main fea-
ture of this new DRP solver is that the high-order terms are computed by solving linearized classical Riemann
problems for the high-order time derivatives, directly. This is motivated by the fact that for a linear system, all-
order time derivatives obey the original system of PDEs. We prove that for the case of a linear system with
constant coefficients all three methods studied here coincide and their solution is identical to the exact solution
of the DRP problem. For special cases we also relate the three solvers to the acoustic approximation of Ben-
Artzi and Falcovitz [2].

A systematic assessment of the methods to solve the DRP for non-linear systems is performed, through a
carefully selected suite of test problems. We also implement some of the schemes to construct high-order
numerical methods to solve the general initial boundary value problem. The methods are implemented and
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assessed for one-dimensional problems and for two-dimensional problems on unstructured meshes. Conver-
gence rates of the schemes for one and two-dimensional test problems are studied. We also address the ques-
tion of balance between flux gradients and source terms, for steady flow, and the so-called well-balanced

schemes. We find that the ADER schemes may be termed asymptotically well-balanced, in the sense that
the well-balanced property is attained as the order of the method increases, and this without introducing
any ad-hoc fixes to the schemes or to the formulation of the original equations.

The rest of this paper is organized as follows. In Section 2 we define the mathematical problem and review
an existing DRP solver. In Section 3 we present two new DRP solvers. Section 4 deals with the DRP solvers in
the context of high-order finite volume methods in one-space dimension. In Section 5 we assess the
performance of the local DRP solvers. In Section 6 we implement ADER high order numerical methods
for two-dimensional systems on unstructured meshes and for the shallow water equations with source terms.
Conclusions are drawn in Section 7.
2. The derivative Riemann problem

Here we first state the mathematical problem and then briefly review an existing semi-analytical method to
compute the solution at the interface as a function of time.

2.1. The mathematical problem

In this paper we are interested in methods for solving the high-order Riemann problem
PDEs : otQþ oxFðQÞ ¼ SðQÞ; x 2 ð�1;1Þ; t > 0;

IC : Qðx; 0Þ ¼
QLðxÞ if x < 0;

QRðxÞ if x > 0:

� 9=; ð1Þ
This cauchy problem was studied in [44,46] and has been termed by them the Derivative Riemann Problem,
terminology that we shall adopt here.

The partial differential equations (PDEs), with source terms, are assumed to be a general system of hyper-
bolic balance laws. The initial condition (IC) consists of two vectors QLðxÞ and QRðxÞ, the components of
which are assumed to be smooth functions of x, with K continuous non-trivial spatial derivatives away from
zero. We denote by DRPK the Cauchy problem (1). In the DRP0 all first and higher-order spatial derivatives of
the initial condition away from the origin vanish identically; this case corresponds to the classical piece-wise
constant data Riemann problem, associated with the first-order Godunov scheme [15]. Similarly, in the DRP 1

all second and higher-order spatial derivatives of the initial condition for the DRP away from the origin van-
ish identically; this case corresponds to the piece-wise linear data Riemann problem, or the so-called general-
ized Riemann problem (GRP), associated with a second-order method of the Godunov type
[29,47,1,6,5,28,40,2].

Fig. 1 depicts the classical Riemann problem DRP 0 for a typical 3� 3 homogeneous non-linear system, for
which it is assumed that the left wave is a rarefaction, the right wave is a shock and the middle wave is a contact.
The top frame shows the initial condition for a single component q of the vector of unknowns Q. The bottom
frame of Fig. 1 depicts the structure of the corresponding solution in the x� t plane; characteristic curves are
straight lines. We note however, that the solution of the Riemann problem with piece-wise constant data but with
source terms does not have a similarity solution and cannot be represented as in Fig. 1 (bottom frame).

Fig. 2 illustrates the Derivative Riemann Problem DRP K ; the top frame depicts the initial condition for a
single component q and consists of two smooth vectors separated by a discontinuity at the origin. The bottom
frame of Fig. 2 depicts the corresponding structure of the solution in the x� t plane. Now characteristics are
no longer straight lines. Compare Figs. 1 and 2. The aim of this paper is to present methods to find the solu-
tion of (1) at the origin x ¼ 0 and for t > 0, as a function of time and represented by QLRðsÞ in Fig. 2. Recall
that for the classical (homogeneous) Riemann problem the solution is self-similar, it depends on the ratio x=t
and is constant at x ¼ 0 (the interface) for t > 0. In many situations of interest one can find the solution every-
where in the half plane x 2 ð�1;1Þ; t > 0, although for the purpose of computing a numerical flux, knowing
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the solution along the interface is sufficient. For the derivative Riemann problem DRP K , with K > 0, finding
the solution in the half plane x 2 ð�1;1Þ; t > 0, is a formidable task that is possible only in special cases. See
[28] for the complete solution of the DRP 1 for the Euler equations for ideal gases.

To construct high-order numerical methods of the ADER type [42] it is sufficient to find the solution QLRðsÞ
at the interface position x ¼ 0, as a function of time s alone. QLRðsÞ will provide sufficient information to com-
pute a numerical flux to construct a numerical scheme of ðK þ 1Þth order of accuracy in both space and time.
The corresponding intercell numerical flux, denoted by FLR, is the time-integral average
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FLR ¼
1

Dt

Z Dt

0

FðQLRðsÞÞds; ð2Þ
where Dt is the time step of the scheme. Numerical methods based on this framework were called ADER meth-
ods in [42]. Early versions of the approach were communicated in [39,40].

Note that the conventional case of piece-wise constant data reproduces the classical first-order upwind
method of Godunov [15].
2.2. A Known Method of Solution: the Toro–Titarev (TT) solver

Here we briefly review the method proposed by Toro and Titarev [44,46], whereby a semi-analytical solu-
tion of the Derivative Riemann Problem (1) is obtained. Their method, as in [1] for second order and in [25]
for the general case, first expresses the sought solution QLRðsÞ at the interface x ¼ 0 as the power series expan-
sion in time
QLRðsÞ ¼ Qð0; 0þÞ þ
XK

k¼1

oðkÞt Qð0; 0þÞ
h i sk

k!
; ð3Þ
where
Qð0; 0þÞ ¼ lim
t!0þ

Qð0; tÞ:
The solution contains the leading term Qð0; 0þÞ and higher-order terms, with coefficients determined by the
time derivatives oðkÞt Qð0; 0þÞ. The determination of all terms in the expansion includes the following steps:

Step (I): The leading term. To compute the leading term one solves exactly or approximately the classical
Riemann problem
 9

PDEs : otQþ oxFðQÞ ¼ 0;

ICs : Qðx; 0Þ ¼
QLð0�Þ if x < 0;

QRð0þÞ if x > 0;

� =; ð4Þ

with

QLð0�Þ ¼ lim
x!0�

QLðxÞ; QRð0þÞ ¼ lim
x!0þ

QRðxÞ: ð5Þ

The similarity solution of (4) is denoted by Dð0Þðx=tÞ and the leading term in (3) is
Qð0; 0þÞ ¼ Dð0Þð0Þ: ð6Þ

Step (II): Higher order terms. There are three sub-steps here.

(1) Time derivatives in terms of spatial derivatives: Use the Cauchy–Kowalewski procedure to express time
derivatives in (3) in terms of functionals of space derivatives
oðkÞt Qðx; tÞ ¼ GðkÞðoð0Þx Q; oð1Þx Q; . . . ; oðkÞx QÞ: ð7Þ
The source term SðQÞ in (1) is included in the arguments of GðkÞ. The problem now is that of deter-
mining the arguments of GðkÞ, namely the spatial derivatives at the interface. An illustration of the
Cauchy–Kowalewski procedure is given in Section 2.3.
(2) Evolution equations for derivatives: Construct evolution equations for spatial derivatives
otðoðkÞx Qðx; tÞÞ þ AðQÞoxðoðkÞx Qðx; tÞÞ ¼ HðkÞ; ð8Þ
where AðQÞ is the Jacobian matrix of the PDEs in (1).
(3) Riemann problems for spatial derivatives: Given that the above equations are too complicated Toro
and Titarev [44,46] assumed equations (8) to be linear with constant coefficient matrix
A
ð0Þ
LR ¼ AðQð0; 0þÞÞ and homogeneous. We remark that one could also arrive at the same result



C.E. Castro, E.F. Toro / Journal of Computational Physics 227 (2008) 2481–2513 2487
assuming from the outset, only in this step, that the governing equations are linear with constant coef-
ficients. See Section 3.3.1.Then to determine the spatial derivatives at the interface one poses classical,
homogeneous linearized Riemann problems for spatial derivatives as follows
PDEs : otðoðkÞx Qðx; tÞÞ þ A
ð0Þ
LRoxðoðkÞx Qðx; tÞÞ ¼ 0;

ICs : o
ðkÞ
x Qðx; 0Þ ¼

o
ðkÞ
x QLð0�Þ if x < 0;

o
ðkÞ
x QRð0þÞ if x > 0:

( 9>>=>>; ð9Þ

Solve these Riemann problems to obtain similarity solutions DðkÞðx=tÞ and set

oðkÞx Qð0; 0þÞ ¼ DðkÞð0Þ: ð10Þ
Step (III): The solution. Form the solution as the power series expansion:
QLRðsÞ ¼ C0 þ C1sþ C2s
2 þ � � � þ CKsK ; ð11Þ

with C0 as in (6) and

Ck �
o
ðkÞ
t Qð0; 0þÞ

k!
¼ GðkÞðDð0Þð0Þ;Dð1Þð0Þ; . . . ;DðkÞð0ÞÞ

k!
; ð12Þ

for k ¼ 1; . . . ;K.
This solution technique for the Derivative Riemann Problem DRP K reduces the problem to that of solving
K þ 1 classical homogeneous Riemann problems, one (generally non-linear) Riemann problem to compute the
leading term and K linearized Riemann problems to determine the higher order terms.

The leading term requires the availability of a Riemann solver, exact or approximate. The K linearized Rie-
mann problems (9) for most well-known systems associated with the higher order terms can be solved analyt-
ically and no choice of a Riemann solver is necessary. Moreover, all of these linearized problems have the same
eigenstructure, as the coefficient matrix is the same for all Riemann problems for derivatives.

In principle, the technique can be applied to calculate the early-time solution of advection-reaction equa-
tions with piece-wise smooth initial conditions. One can set up a derivative Riemann problem at any desired
position, taking care that at each point x ¼ xd of discontinuity in the initial condition one sets a corresponding
derivative Riemann problem centred at xd . The solution at each point xd , for a small time s, can be used to
check the results of numerical schemes.

2.3. Illustration of the Cauchy–Kowalewski procedure

Here we illustrate the application of the Cauchy–Kowalewski procedure to express time derivatives in terms
of spatial derivatives, by applying it to the non-linear wave equation with source term
otqðx; tÞ þ oxf ðqðx; tÞÞ ¼ sðqðx; tÞÞ: ð13Þ

We assume qðx; tÞ to be continuous and differentiable up to order K. From (13) it is immediate that the first-
order time derivative is
otqðx; tÞ ¼ �kðqÞoxqðx; tÞ þ sðqÞ � gð1Þðoð0Þx q; oð1Þx qÞ; ð14Þ

where kðqÞ ¼ f 0ðqÞ and the functional gð1Þ is
gð1Þðoð0Þx q; oð1Þx qÞ ¼ �f 0ðoð0Þx qÞ � oð1Þx qþ sðoð0Þx qÞ; oð0Þx q ¼ q: ð15Þ

In the same way, the second-order time derivative is
oð2Þt qðx; tÞ ¼ ðf 0ðqÞÞ2oð2Þx qðx; tÞ þ 2f 0ðqÞf 00ðqÞðoð1Þx qðx; tÞÞ2 � oð1Þx qðx; tÞðf 00ðqÞsðqÞ þ 2f 0ðqÞs0ðqÞÞ þ s0ðqÞsðqÞs
� gð2Þðoð0Þx q; oð1Þx q; oð2Þx qÞ: ð16Þ



2488 C.E. Castro, E.F. Toro / Journal of Computational Physics 227 (2008) 2481–2513
In this case the functional gð2Þ is more complicated; its arguments are spatial derivatives of qðx; tÞ. In general,
the kth order time derivative is written as a functional depending on the space derivatives up to order k
oðkÞt qðx; tÞ ¼ gðkÞðoð0Þx q; oð1Þx q; . . . ; oðk�1Þ
x q; oðkÞx qÞ; ð17Þ
for k ¼ 1 . . . K. In practice, for the more general case of non-linear systems we use symbolic manipulators to
compute the functional GðkÞ in (7) and (17).

3. Other methods of solution

Here we study two alternative methods for solving the DRP (1). The first results from a re-interpretation of
the high-order numerical method first proposed by Harten et al. [17]. Consequently we call this derivative Rie-
mann problem solver, the Harten–Engquist–Osher–Chakravarthy (HEOC) solver. The second method we
study results from a modification of both the Toro–Titarev solver [44] of Section 2.2 and the HEOC solver.

3.1. The Harten–Engquist–Osher–Chakravarthy (HEOC) solver

Here we re-interpret the method proposed by Harten, Engquist, Osher and Chakravarthy [17] to compute
numerical fluxes for their high-order methods, as a technique to provide an approximate solution to the deriv-
ative Riemann problem (1) at the interface x ¼ 0, as a function of time. They proposed power series expan-
sions in space and time for the solution in each control volume, or cell. There followed the application of
the Cauchy–Kowalewski method to convert all time derivatives in the expansions to space derivatives, which
in turn could be computed on the initial data.

In our re-interpretation we include source terms in the equations and consider power series expansions in
time on each side of the interface defined as follows:
eQLðsÞ ¼ QLð0�Þ þ
XK

k¼1

½oðkÞt Qð0�; 0Þ�
sk

k!
ð18Þ
and
eQRðsÞ ¼ QRð0þÞ þ
XK

k¼1

½oðkÞt Qð0þ; 0Þ�
sk

k!
; ð19Þ
with
Qð0�; 0Þ ¼ lim
x!0�

Qðx; 0Þ � QLð0�Þ ð20Þ
and
Qð0þ; 0Þ ¼ lim
x!0þ

Qðx; 0Þ � QRð0þÞ: ð21Þ
The Cauchy–Kowalewski procedure allows us to use the PDEs in (1) to express all time derivatives in (18) and
(19) as functions (or functionals) of space derivatives and of the source terms SðQÞ, namely
oðkÞt Qðx; tÞ ¼ GðkÞðoð0Þx Q; oð1Þx Q; . . . ; oðkÞx QÞ: ð22Þ

See the illustration of the Cauchy–Kowalewski procedure in Section 2.3. These expressions are well defined to
the left and right of the interface, given that the initial conditions in (1) are assumed to be smooth away from
0. We can also define the limiting values from left and right, at t ¼ 0, of the spatial derivatives of the initial
conditions, namely
Q
ðkÞ
L ð0�Þ � lim

x!0�

dk

dxk
QLðxÞ; ð23Þ

Q
ðkÞ
R ð0þÞ � lim

x!0þ

dk

dxk
QRðxÞ: ð24Þ
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Thus we have
Fig. 3.
time ev
evolve
oðkÞt Qð0�; 0Þ ¼ GðkÞðQð0ÞL ð0�Þ;Q
ð1Þ
L ð0�Þ; . . . ;Q

ðkÞ
L ð0�ÞÞ ð25Þ
and
oðkÞt Qð0þ; 0Þ ¼ GðkÞðQð0ÞR ð0þÞ;Q
ð1Þ
R ð0þÞ; . . . ;Q

ðkÞ
R ð0þÞÞ: ð26Þ
We define the solution of the DRP (1) at the interface x ¼ 0, at time t ¼ s as
QLRðsÞ ¼ Dðs; 0Þ; ð27Þ

where now Dðs; x=ðt � sÞÞ is the similarity solution of the classical, homogeneous Riemann problem
PDEs : otQþ oxFðQÞ ¼ 0;

ICs : Qðx; 0Þ ¼
eQLðsÞ if x < 0;eQRðsÞ if x > 0:

( 9>=>; ð28Þ
Note that here Dðs; x=ðt � sÞÞ depends on the parameter s. We call this re-interpretation of the method pro-
posed by Harten et al. [17] as a derivative Riemann solver, the Harten–Engquist–Osher–Chakravarthy
(HEOC) solver.

Fig. 3 gives an interpretation of the HEOC solution method for the DRP (1). At time t ¼ 0 one performs a
Taylor series expansion in time on the limiting values of the data left and right of the interface (circles). Upon
the application of the Cauchy–Kowalewski method one evolves the data in time on each side of the interface,
see (18) and (19), to yield time-evolved states eQLðsÞ and eQRðsÞ, at any chosen time t ¼ s (rhombuses in Fig. 3).
These (constant) states at t ¼ s form the initial conditions for a classical Riemann problem, as depicted on the
top part of Fig. 3 by the self-similar wave pattern. The sought solution is that given by (27), which is constant
along the t-axis associated with the self-similar wave pattern. As the method applies to any time s one has a
time-dependent solution at the interface.

We remark that, just as in the Toro–Titarev solver [44] reviewed in Section 2.2, the HEOC solution method
as presented here applies to in-homogeneous non-linear hyperbolic balance laws. The influence of the source
term enters via the Cauchy–Kowalewski procedure, in which the source terms enter the coefficients in (18),
(19) via (25), (26). But note that at no point in the method it becomes necessary to solve Riemann problems,
explicitly accounting for the influence of the source terms.
L R

x=0
t=0

t=τ

QL(τ) QR(τ)

D(τ,0)t

x

xL R

Illustration of the HEOC Derivative Riemann Problem solver. The limiting values of the initial data from left and right (circles) are
olved separately to any time s (rhombuses). The desired solution results from solving the classical Riemann problem with these

d states as data.
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3.2. The Castro–Toro solver

Another method of solution for the DRP (1) results from a modification of both the Harten et al. (HEOC)
and the Toro–Titarev (TT) solvers. The sought solution at the interface is again expressed as in (3), with the
leading term computed as in (6). This part is identical to the TT solver. To compute the higher order terms we
solve time-derivative Riemann problems, that is, for any index k > 0 we compute oðkÞt Qð0�; 0Þ and oðkÞt Qð0þ; 0Þ
as in (25) (left) and (26) (right). To find oðkÞt Qð0; 0þÞ right at the interface we solve the classical linearized
homogeneous Riemann problem
PDEs : otðoðkÞt Qðx; tÞÞ þ A
ð0Þ
LR oxðoðkÞt Qðx; tÞÞ ¼ 0;

ICs : oðkÞt Qðx; 0Þ ¼
oðkÞt Qð0�; 0Þ if x < 0;

oðkÞt Qð0þ; 0Þ if x > 0:

( 9>>=>>; ð29Þ
The similarity solution is denoted by TðkÞðx=tÞ and the sought value is
o
ðkÞ
t Qð0; 0þÞ ¼ TðkÞð0Þ: ð30Þ
The final solution has the form (11) with C0 as in (6) and
Ck �
oðkÞt Qð0; 0þÞ

k!
¼ TðkÞð0Þ

k!
; ð31Þ
for k ¼ 1; . . . ;K.
Note the analogy between (9) and (29). Both are motivated by the fact that for a linear homogeneous sys-

tem with constant coefficient matrix, all temporal and spatial partial derivatives of the vector of unknowns, if
defined, obey the original system.
3.3. Special cases

In this section we consider two special DRP problems and compare analytically the various solvers studied
in this paper.
3.3.1. Linear systems

Definition. The model DRP problem 1. We define as the model DRP problem 1 the following Cauchy
problem
otQþ AoxQ ¼ 0; x 2 ð�1;1Þ; t > 0;

Qðx; 0Þ � Qð0ÞðxÞ ¼
PLðxÞ if x < 0;

PRðxÞ if x > 0;

� 9=; ð32Þ
where Q ¼ ½q1; q1; . . . ; qm�
T is the vector of m unknowns; A is a constant coefficient matrix with m real eigen-

values k1 < k2 < � � � < km; R1;R2; . . . ;Rm are the corresponding linearly independent right eigenvectors so that
the matrix of eigenvectors is R ¼ ½R1jR2j � � � jRm�; the functions (vectors) PLðxÞ;PRðxÞ are assumed to be poly-
nomials of degree at most K.

Lemma. The model DRP problem 1 defined by (32) has exact solution at the interface
Qð0; sÞ ¼
PI
i¼1

cR;ið0ÞRi þ
Pm

i¼Iþ1

cL;ið0ÞRi

þ
PK
k¼1

ð�AÞk
PI
i¼1

cðkÞR;ið0ÞRi þ
Pm

i¼Iþ1

cðkÞL;i ð0ÞRi

� �
sk

k!

9>>>=>>>; ð33Þ
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where Wðx; tÞ ¼ R�1Qðx; tÞ is the vector of characteristic variables, with
Wðx; 0Þ �Wð0ÞðxÞ ¼ R�1Qðx; 0Þ ¼ CLðxÞ � R�1PLðxÞ if x < 0;

CRðxÞ � R�1PRðxÞ if x > 0;

(
ð34Þ
where the components of Wð0ÞðxÞ are
wð0Þi ðxÞ ¼
cL;iðxÞ if x < 0;

cR;iðxÞ if x > 0

�
ð35Þ
and I is an integer such that
0 6 I 6 m; ki 6 0 if i 6 I ; ki > 0 if i > I : ð36Þ
Proof. The exact solution of (32) is
Qðx; tÞ ¼
Xm

i¼1

wð0Þi ðx� kitÞRi: ð37Þ
Then from (35), at x ¼ 0, we have
Qð0; sÞ ¼
XI

i¼1

cR;ið�kisÞRi þ
Xm

i¼Iþ1

cL;ið�kisÞRi: ð38Þ
Taylor expanding in (38) about 0 and using the relation
ð�kiÞkRi ¼ ð�AÞkRi ð39Þ

we obtain
cM ;ið�kisÞI ¼ cM ;ið0ÞIþ
XK

k¼1

ð�AÞkcðkÞM ;ið0Þ
sk

k!
; M ¼ L;R; ð40Þ
where I is the identity matrix. Substituting (40) into (38) gives the sough result (33) and the lemma is
proved. h

Proposition. The solution of the model DRP problem 1 given by (32) using (a) the Toro–Titarev method, (b) the

Castro–Toro method and (c) the Harten–Engquist–Osher–Crakravarthy method is exact.

Proof. Here we prove the proposition only for the Toro–Titarev method, which first expresses the solution at
x ¼ 0 via the power series expansion
QLRðsÞ ¼ Qð0; 0þÞ þ
XK

k¼1

½oðkÞt Qð0; 0þÞ�
sk

k!
: ð41Þ
The leading term Qð0; 0þÞ is obtained from solving the classical (linear) Riemann problem
otQþ AoxQ ¼ 0; x 2 ð�1;1Þ; t > 0;

Qðx; 0Þ � Qð0ÞðxÞ ¼
PLð0Þ if x < 0;

PRð0Þ if x > 0;

� 9=; ð42Þ
whose exact solution is
Qð0; 0þÞ ¼
XI

i¼1

cR;ið0ÞRi þ
Xm

i¼Iþ1

cL;ið0ÞRi; ð43Þ
where cL;ið0Þ and cR;ið0Þ are respectively the components of CLðxÞ and CRðxÞ in (34).
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The high-order terms in (41) require the determination of the coefficients o
ðkÞ
t Qð0; 0þÞ. Application of the

Cauchy–Kowalewski procedure to the system in (32) gives
oðkÞt Qðx; tÞ ¼ ð�AÞkoðkÞx Qðx; tÞ; k ¼ 1; . . . ;K: ð44Þ
Note also that
otðoðkÞx QÞ þ AoxðoðkÞx QÞ ¼ 0; k ¼ 1; . . . ;K ð45Þ
and
oðkÞx Qðx; 0Þ ¼ P
ðkÞ
L ð0Þ if x < 0;

P
ðkÞ
R ð0Þ if x > 0:

(
ð46Þ
The solution of the classical Riemann problem for derivatives (45) and (46) is
oðkÞx Qð0; 0þÞ ¼
XI

i¼1

cðkÞR;ið0ÞRi þ
Xm

i¼Iþ1

cðkÞL;i ð0ÞRi; ð47Þ
where now the characteristic variables of the problem are
oðkÞx Wðx; tÞ ¼ R�1oðkÞx Qðx; tÞ
with
o
ðkÞ
x Wðx; 0Þ ¼ R�1 o

ðkÞ
x Qðx; 0Þ ¼ C

ðkÞ
L ðxÞ � R�1 P

ðkÞ
L ðxÞ if x < 0;

C
ðkÞ
R ðxÞ � R�1 P

ðkÞ
R ðxÞ if x > 0:

(
ð48Þ
Use of (43), (44) and (47) gives the sought solution and the proposition is thus proved. h

Remark

� The proof for the other two methods is similar and is thus omitted.
� For the case in which the polynomials PLðxÞ and PRðxÞ are of first degree, the GRP method of Ben-Artzi

and Falcovitz [2] also reproduces the exact solution.
� If the data states PLðxÞ;PRðxÞ in (32) are arbitrary but smooth functions, then the proposed methods TT,

HEOC and CT are not exact, due to the truncation of the series expansion (41).
3.3.2. Non-linear systems: the acoustic approximation

Definition. The model DRP problem 2. We define as the model DRP problem 2 the following Cauchy
problem
PDEs : otQþ oxFðQÞ ¼ 0; x 2 ð�1;1Þ; t > 0;

IC : Qðx; 0Þ ¼
PLðxÞ � bQ þ xQ0L if x < 0;

PRðxÞ � bQ þ xQ0R if x > 0:

( 9>=>; ð49Þ
This problem considers a nonlinear system of hyperbolic conservation laws but with very special initial con-
dition, namely, the vector of unknowns is continuous at the interface and the data polynomials PLðxÞ and
PRðxÞ are of first degree; there is only a discontinuity in the first spatial derivative of the vector of unknowns
at the initial time. Ben-Artzi and Falcovitz [2] considered this problem for the Euler equations and solved it by
a method called the acoustic approximation.

Proposition. The solution of the model DRP problem 2 given by (49) obtained with the solvers (a) Toro–Titarev,

(b) Castro–Toro and (c) Ben-Artzi and Falcovitz are identical.
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Proof. All three solvers express the solution at the interface via the expansion
QLRðsÞ ¼ Qð0; 0þÞ þ sotQð0; 0þÞ: ð50Þ

The leading term for all three solvers is obviously Qð0; 0þÞ ¼ bQ. Next we show that the second term con-

taining the time derivative otQð0; 0þÞ is also identical. We give the details of the proof only for two of the three
solvers. In the Toro–Titarev solver one first applies the Cauchy–Kowalewski procedure to express, via the sys-
tem in (49), the time derivatives in terms of the spatial derivatives, namely
otQðx; tÞ ¼ �bAoxQðx; tÞ; bA ¼ Að bQÞ; ð51Þ

with AðQÞ the Jacobian matrix of the system in (49). Now the problem is reduced to solving for the spatial
derivatives at the interface. This is accomplished by solving exactly the following linear Riemann problem
PDEs : otðoxQðx; tÞÞ þ bAoxðoxQðx; tÞÞ ¼ 0;

ICs : oxQðx; 0Þ ¼
Q0L if x < 0;

Q0R if x > 0:

� 9>=>; ð52Þ
The exact solution of this linear Riemann problem is given by
oxQð0; 0þÞ ¼ Q0L þ
X
ki60

aiRi; ð53Þ
where ki and Ri are respectively the eigenvalues and right eigenvectors of bA; ai are the wave strengths obtained
from the solution of the following algebraic linear system
D � Q0R �Q0L ¼
Xm

i¼1

aiRi: ð54Þ
The final solution is
Qð0; sÞ ¼ bQ � sbA Q0L þ
X
ki60

aiRi

" #
: ð55Þ
In the Castro–Toro solver one finds the time derivative vector otQð0; 0þÞ at the interface by directly solving the
following linear Riemann problem for time derivatives
PDEs : otðotQðx; tÞÞ þ bAoxðotQðx; tÞÞ ¼ 0;

ICs : otQðx; 0Þ ¼
otQð0�; 0Þ ¼ �bAQ0L if x < 0;

otQð0þ; 0Þ ¼ �bAQ0R if x > 0:

( 9>>=>>; ð56Þ
The initial conditions in (56) are obtained by applying the Cauchy–Kowalewski procedure on both sides of the
interface. The exact solution of this linear Riemann problem is
otQð0; 0þÞ ¼ ðotQÞL þ
X
ki60

~aiRi; ð57Þ
where ~ai are the wave strengths obtained from the solution of the algebraic linear system
eD � bAðQ0R �Q0LÞ ¼
Xm

i¼1

~aiRi: ð58Þ
We note that eD ¼ �bAD and ~ai ¼ �aiki. Manipulations of (57) and using (53) give
otQð0; 0þÞ ¼ �bAQ0L �
P
ki60

aikiRi;

¼ �bAQ0L � bA P
ki60

aiRi;

¼ �bAoxQð0; 0þÞ:

9>>>>=>>>>; ð59Þ
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From (55) and (59) we conclude that the Toro–Titarev and the Castro–Toro solvers give identical solutions to
the model problem (49). h

Remark. The solution of the model problem (49) using GRP solver of Ben-Artzi and Falcovitz [1] is identical
to those of the previous two solvers. The proof is omitted.
4. High-order numerical schemes

The DRP solvers studied in this paper can be used to construct Godunov-type schemes of arbitrary order of
accuracy. Here we consider these schemes in the framework of the finite volume method.

4.1. Finite volume schemes

The finite volume approach for a non-linear system of m� m hyperbolic equations with source terms
otQþ oxFðQÞ ¼ SðQÞ ð60Þ

reads
Qnþ1
i ¼ Qn

i �
Dt
Dx

Fiþ1
2
� Fi�1

2

h i
þ DtSi; ð61Þ
where Qn
i is an approximation to the spatial-integral average
Qn
i ¼

1

Dx

Z x
iþ1

2

x
i�1

2

Qðx; tnÞdx ð62Þ
in the cell xi�1
2
; xiþ1

2

h i
. Fiþ1

2
is the numerical flux, which is an approximation to the time-integral average (2), and

Si is the numerical source, which is an approximation to a volume integral. The numerical scheme is com-
pletely defined once expressions for Fiþ1

2
and Si are provided.

In the ADER method the numerical flux Fiþ1
2

is computed by solving the Derivative Riemann Problem
PDEs : otQþ oxFðQÞ ¼ SðQÞ;

IC : Qðx; 0Þ ¼
PiðxÞ if x < 0;

Piþ1ðxÞ if x > 0;

� 9=; ð63Þ
and then computing the time average as in (2). Here PiðxÞ is a vector defined in cell xi�1
2
; xiþ1

2

h i
whose com-

ponents are reconstructed polynomials of an appropriate degree; likewise Piþ1ðxÞ. In principle, any recon-
struction procedure can be used but in practice the non-linear ENO and WENO reconstruction procedures
are recommended [18,35,34]. The DRP (63) can be solved using any of the methods studied in this paper.

In the ADER approach the numerical source Si results from a high-order approximation to the volume-
integral average
Si ¼
1

Dt
1

Dx

Z Dt

0

Z x
iþ1

2

x
i�1

2

SðQiðx; tÞÞdxdt; ð64Þ
still denoted by Si, where Qiðx; tÞ is a high-order approximation to the solution of (60) inside the control vol-
ume, obtained as follows. At any numerical integration point xd 2 xi�1

2
; xiþ1

2

h i
the solution Qðxd ; sÞ, as a func-

tion of time, is computed using the Cauchy–Kowalewski method,
Qðxd ; sÞ ¼ Qðxd ; 0Þ þ
XK

k¼1

½oðkÞt Qðxd ; 0Þ�
sk

k!
: ð65Þ
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The functions GðkÞ in (7) are now functions of space derivatives of the reconstruction polynomial PiðxÞ and
thus
Qiðxd ; sÞ ¼ PiðxdÞ þ
XK

k¼1

½GðkÞðPð0Þi ðxdÞ;Pð1Þi ðxdÞ; . . . ;P
ðkÞ
i ðxdÞÞ�

sk

k!
: ð66Þ
With this information available the space-time integral average can be computed to any desired order of
accuracy.

4.2. Analogy with second-order schemes

The second order version of the ADER schemes reported in [40] is analogous to the GRP scheme of Ben-
Artzi and Falcovitz [1]. In fact the scheme of [40] is a modification of the GRP scheme, whereby the compu-
tation of the time derivative in the power series expansion (to second order) for the solution of the DRP is
reduced to computing the solution of a linearized Riemann problem for spatial gradients. The higher order
ADER schemes are a straight generalization of this modified GRP scheme. As seen in previous sections,
the numerical flux is computed at the solution of the Derivative Riemann Problem at the interface, which
is found as a power series expansion right at the interface x ¼ 0, as a function of time.

Similarly, the method of Harten et al. [17] in its second-order mode (for the homogeneous case) may be seen
as a way of interpreting the second order MUSCL-Hancock scheme [48], the numerical flux of which is
FMH
iþ1

2
¼ FMH

iþ1
2
ð eQR

i ;
eQL

iþ1Þ ¼ Fð eQiþ1
2
ð0ÞÞ; ð67Þ
where eQiþ1
2
ðx=tÞ is the similarity solution of the classical Riemann problem
PDEs : otQþ oxFðQÞ ¼ 0; x 2 ð�1;1Þ; t > 0;

IC : Qðx; 0Þ ¼
eQR

i if x < 0;eQL
iþ1 if x > 0;

( 9>=>; ð68Þ
with
 eQR
i ¼ QR

i � 1
2

Dt
Dx ½FðQ

R
i Þ � FðQL

i Þ�;eQL
iþ1 ¼ QL

iþ1 � 1
2

Dt
Dx ½FðQ

R
iþ1Þ � FðQL

iþ1Þ�;

)
ð69Þ
and
QR
i ¼ Qn

i þ
1

2
DxDi; QL

iþ1 ¼ Qn
iþ1 �

1

2
DxDiþ1: ð70Þ
Here Di and Diþ1 are the slopes in the MUSCL reconstruction in cells i and iþ 1 respectively. Note the
relations
Di ¼
QR

i �QL
i

Dx
¼ P0i; Diþ1 ¼

QR
iþ1 �QL

iþ1

Dx
¼ P0iþ1: ð71Þ
On the other hand, a second-order method with the HEOC solver, see (18), (19), has flux
Fiþ1
2
¼ Fiþ1

2

eQL
1

2
Dt

� �
; eQR

1

2
Dt

� �� �
¼ F D

1

2
Dt; 0

� �� �
: ð72Þ
See (27). From (18) and (19) we have
eQLð12 DtÞ ¼ Pið0�Þ � 1
2
DtAL P0ið0�Þ;eQRð12 DtÞ ¼ Piþ1ð0þÞ � 1

2
DtAR P0iþ1ð0þÞ;

)
ð73Þ
with
AL ¼ AðQLð0�ÞÞ; AR ¼ AðQRð0þÞÞ: ð74Þ
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For a linear system with constant coefficient matrix bA we have FðQÞ ¼ bAQ and one sees that the left and right
states in (68) are identical to those in (73) and thus the second order ADER scheme based on the HEOC solver
is identical to the MUSCL-Hancock scheme.

The schemes are not identical for non-linear systems but the analogy just discussed provides an interpre-
tation to the rather enigmatic evolution step (69) of the boundary extrapolated values by half a time step,
in the MUSCL-Hancock method [48].

Thus, from the numerical point of view, we can interpret the numerical method of Harten et al. [17] as
being a high-order generalization of the MUSCL-Hancock second order method. Similarly, the
ADER method, with any of the DRP solvers studied here, may be interpreted as a high-order
generalization of the second order method of Ben-Artzi and Falcovitz [1], following its modification
reported in [40].

Corresponding finite volume schemes in two space dimensions using unstructured meshes are described in
Section 6.

5. Tests for the derivative Riemann problem solvers

In this section we assess the performance of the Derivative Riemann Problem solvers studied in the paper
via a series of test problems for the Euler equations of gas dynamics and for the shallow water equations with
source terms. As no exact solutions are known for the class of test problems of interest here, we obtain ref-
erence solutions by computing solutions numerically. To this end we use three numerical methods, the first-
order Godunov method, the second-order MUSCL-Hancock method and the Random Choice Method
(RCM) [13], all of them applied on a very fine mesh.

We note that RCM has the unique property of being able to resolve the very-early time evolution of the
solution in a way that no other method known to us can do. This is important, as the proposed DRP solvers
are assessed in their domain of validity, namely for short times. For test problems involving an initial discon-
tinuity, most methods will require a fairly large number of time steps to gradually begin to establish the struc-
ture of the true solution. Moreover, the early-time numerical results may exhibit large unphysical oscillations,
even when monotone (for the scalar case) schemes are used. To illustrate this point we solve a simple shock-
tube problem for the Euler equations in the domain ½�1; 1�, with initial data qL ¼ 1; uL ¼ 3=4, pL ¼ 1 for x < 0
and qR ¼ 1=8; uR ¼ 0, pR ¼ 1=10 for x > 0.

Fig. 4 shows the exact (full line) and numerical solutions (symbols) at time t ¼ 0:015 using the Godu-
nov first-order method (circles), the MUSCL-Hancock method (squares) and the RCM method (triangles).
For all three numerical methods we use the exact Riemann solver. For the first two methods we use
Ccfl ¼ 0:9 and for RCM we use Ccfl ¼ 0:45. Fig. 4 shows only the region close to the position of the dis-
continuities at time t ¼ 0. For the output time considered the Godunov and MUSCL-Hancock methods
do only four time steps and RCM nine time steps. The first two methods are unable to resolve the wave
structure correctly. RCM finds all intermediate states correctly. This property of RCM is useful to our
purpose.

Recall that the DRP solution is valid precisely at the interface x ¼ 0, as a function of time. The
numerical methods give the approximate solution in every cell of the mesh that discretizes the
domain ½�1; 1�. For any mesh used one always has, at any time, one value (vector) immediately to the left
of x ¼ 0 and one immediately to the right of x ¼ 0. To extract the sought reference solution at a given
time we solve the classical Riemann problem for these two neighbouring states and pick up the solution
right at the interface x ¼ 0. This is the reference numerical solution that we compare with the DRP
solutions.

The series of test problems includes a simple test (Test 1) with smooth initial condition throughout, no
discontinuities in the data are present. A second test (Test 2) has no jump discontinuities in the state vari-
ables but admits discontinuities in derivatives at the interface. Other more demanding test problems are
constructed from Test 2, by adding a discontinuity in pressure. Four new cases are thus generated by vary-
ing the strength of the initial pressure jump Dp ¼ ðpL � pRÞ=pR at the interface, namely Dp ¼ 0:01,
Dp ¼ 0:1;Dp ¼ 1:0 and Dp ¼ 10:0. For these four cases with an initial jump discontinuity the reference
numerical solution used is that obtained by the Random Choice Method, on a very fine mesh. Finally
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Fig. 4. Shock-tube test problem. Exact (full line) and numerical solutions (symbols) at time t ¼ 0:015 using the Godunov first-order
method (circles), the MUSCL-Hancock method (squares) and the random choice method (triangles).
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a third test (Test 3) is constructed for the shallow water equations with source terms. This test shows the
DRP solution for a system of non-linear balance laws.

5.1. Test 1: smooth initial conditions

The initial conditions
qðx; 0Þ ¼ 1þ 4
5

sin px
2

� �
þ 1

10
sin 5px

2

� �
;

uðx; 0Þ ¼ 1
2

x� 1
2

� �4
;

pðx; 0Þ ¼ 10þ 2x4:

9>=>; ð75Þ
are smooth throughout; there are no jumps in state or derivatives at x ¼ 0. In this particular case all three
DRP solvers give, algebraically, the same solution.

In Fig. 5 we present the solution of the DRP problem up to fifth order (DRP 4) for all three components
of the vector Q ¼ ½q; qu;E� � ½q1; q2; q3�, where q is density, u is particle velocity and E is total energy. As
expected, by increasing the order, the DRP solution approximates the reference solution very well. The
DRP 0 solution is constant in time and the DRP 1 solution is linear in time. We note that the approximation
improves with the order, which is verified for all three components q1; q2 and q3. For q2 the DRP 1 solution
is practically identical to the DRP 0 solution. This is correct in the sense that at the time s ¼ 0þ the slope
of the reference solution is close to zero and the linear characteristic of the DRP 1 solution will not modify
this slope. Table 1 shows the error in the L2 norm at different times. The main feature of these errors is
that as time decreases the error decreases and as the order of accuracy increases the error decreases, as
expected.
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Fig. 5. Test 1: DRP solution for q1 ¼ q; q2 ¼ qu and q3 ¼ E. Thick line is the reference solution.

Table 1
Test 1: Errors in the L2-norm for the vector Q

Order t ¼ 0:0125 t ¼ 0:0250 t ¼ 0:0500 t ¼ 0:1000

DRP 0 1:1165� 10�1 2:3454� 10�1 5:6704� 10�1 2:3979� 10
DRP 1 2:7922� 10�3 1:7078� 10�2 1:3222� 10�1 1:5275� 10
DRP 2 1:5193� 10�3 1:2754� 10�2 1:1715� 10�1 1:4712� 10
DRP 3 6:8953� 10�5 1:1577� 10�3 2:4454� 10�2 7:3055� 10�1

DRP 4 1:3276� 10�5 2:6653� 10�4 1:0205� 10�2 5:0280� 10�1
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5.2. Test 2: initial data with discontinuous derivatives

Test 2 has piece-wise smooth initial conditions that are continuous at x ¼ 0 but with discontinuous
derivatives at x ¼ 0, see (76). For this test problem all three DRP solvers (TT, CT and HEOC) agree quite
well for the very early times but differ quite visibly for larger times. Fig. 6 shows the fifth-order (DRP 4)
solution for the three solvers, for each component of the vector Q. For the first and third components
the solver CT is the most accurate, followed by HEOC. For the second component of Q, the TT solver
gives better results. More comprehensive information about the relative merits of the three solvers is given
in Tables 2–4, where errors measured in the L2-norm are displayed. For time t ¼ 0:0250, the error of
the DRP 4 solution for the TT solver is 1:3295584� 10�2, for the HEOC solver is 7:3686016 � 10�3 and
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Fig. 6. Fifth order DRP solutions for Test 2, using TT, CT and HEOC for the three components of Q.
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for the CT solver is 5:1386851� 10�3. A general conclusion is that for all three solvers the error diminishes
as the order increases, while the solution is more accurate for small times, and for which they all tend to
agree.
Table
Test 2:

Order

DRP 0

DRP 1

DRP 2

DRP 3

DRP 4
qLðx; 0Þ ¼ 1:433903078þ 4
5

sin pðx�0:3Þ
2

	 

þ 1

10
sin 5pðx�0:3Þ

2

	 

uLðx; 0Þ ¼ 1

2
x� 4

5

� �4 � 0:17355

pLðx; 0Þ ¼ 9:9838þ 2ðx� 0:3Þ4

qRðx; 0Þ ¼ 1þ 4
5

sin px
2

� �
þ 1

10
sin 5px

2

� �
uRðx; 0Þ ¼ 1

2
x� 1

2

� �4

pRðx; 0Þ ¼ 10þ 2x4

9>>>>>>>>>>>=>>>>>>>>>>>;
ð76Þ
2
Errors in the L2-norm for the vector Q for the Toro–Titarev solver

t ¼ 0:0125 t ¼ 0:0250 t ¼ 0:0500 t ¼ 0:1000

3:1847� 10�1 6:9922� 10�1 1:7616� 10 7:8567� 10
2:4316� 10�2 1:1101� 10�1 5:8542� 10�1 5:5045� 10
3:5714� 10�3 2:8047� 10�2 2:5371� 10�1 4:1782� 10
1:9815� 10�3 1:5386� 10�2 1:5270� 10�1 3:3683� 10
1:8509� 10�3 1:3295� 10�2 1:1931� 10�1 2:8327� 10



Table 4
Test 2: Errors in the L2-norm for the vector Q for the Castro–Toro solver

Order t ¼ 0:0125 t ¼ 0:0250 t ¼ 0:0500 t ¼ 0:1000

DRP 0 3:1847� 10�1 6:9922� 10�1 1:7616� 10 7:8567� 10
DRP 1 2:4316� 10�2 1:1101� 10�1 5:8542� 10�1 5:5045� 10
DRP 2 4:2460� 10�3 3:0772� 10�2 2:6462� 10�1 4:2213� 10
DRP 3 1:3222� 10�3 7:3435� 10�3 7:7090� 10�2 2:7221� 10
DRP 4 1:1853� 10�3 5:1386� 10�3 4:1429� 10�2 2:1497� 10

Reference solution (RCM)
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0.04
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0.04
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Fig. 7. DRP solution for TT, CT and HEOC solvers for Dp ¼ 0:01. Thick full line is the reference solution obtained with the RCM
method.

Table 3
Test 2: Errors in the L2-norm for the vector Q for the HEOC solver

Order t ¼ 0:0125 t ¼ 0:0250 t ¼ 0:0500 t ¼ 0:1000

DRP 0 3:1847� 10�1 6:9922� 10�1 1:7616� 10 7:8567� 10
DRP 1 2:4686� 10�2 1:1249� 10�1 5:9124� 10�1 5:5272� 10
DRP 2 4:7040� 10�3 3:2947� 10�2 2:7609� 10�1 4:2905� 10
DRP 3 1:7812� 10�3 9:5614� 10�3 8:9178� 10�2 2:7972� 10
DRP 4 1:6440� 10�3 7:3686� 10�3 5:4229� 10�2 2:2544� 10
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5.3. Tests with discontinuous initial conditions

The tests of this section are generated from the initial conditions of Test 2 by adding a term in pLðx; 0Þ and
thus generating a jump Dp ¼ ðpLð0; 0Þ � pRð0; 0ÞÞ=pRð0; 0Þ in pressure at x ¼ 0. We consider four cases by tak-
ing Dp with values 0:01; 0:1; 1:0; 10:0.

Results are shown in Figs. 7–10. Fig. 7 displays results for Dp ¼ 0:01, with a small pressure jump; the DRP
solution improves as the order increases, for all three solvers. In Fig. 8, for Dp ¼ 0:10, the solution from the
TT solver improves as the order increases. The situation is different for the CT and HEOC solvers, whose solu-
tions cross the reference solution.

Results for Dp ¼ 1:00 are shown in Fig. 9. Here the Toro–Titarev solver seems to perform better but note
that when the order increases to DRP 4, it misrepresents the curvature and thus crosses the reference solution.
The solutions of the present solvers CT and HEOC show wrong initial slopes. As the order increases the cur-
vature seems to approximate the curvature of the reference solution better, with the HEOC solution being clo-
ser to the reference solution than that of CT. For both the CT and HEOC solvers the second order solution
crosses the reference solution.

Fig. 10 shows the DRP solutions for Dp ¼ 10:0. All three solvers give the wrong initial slope. Their failure
to agree with the reference solution increases dramatically as the initial pressure jump becomes larger. More-
over, they fail to capture the initial slope and the behaviour of the reference solution.
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Fig. 8. DRP solution for TT, CT and HEOC solvers for Dp ¼ 0:10. Thick full line is the reference solution obtained with the RCM
method.
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Fig. 9. DRP solution for TT, CT and HEOC solvers for Dp ¼ 1:00. Thick full line is the reference solution obtained with the RCM
method.
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5.4. Test 3: shallow water equations with source terms

For this test problem we utilize the shallow water equations with a source term
otQþ oxFðQÞ ¼ SðQÞ; ð77Þ
with
Q ¼
h

hu

� �
; FðQÞ ¼

hu

hu2 þ 1
2
gh2

� �
; SðQÞ ¼

0

�ghbx

� �
: ð78Þ
Here hðx; tÞ is water depth, uðx; tÞ is particle velocity, hðxÞ is (prescribed) bottom elevation above a horizontal
datum and g is acceleration due to gravity. The total free surface elevation is Hðx; tÞ ¼ hðx; tÞ þ bðxÞ. The
source term accounts for the variation of the bed elevation. See Fig. 11. For background on the shallow water
equations see for example [43].

The initial conditions for h and u and the prescribed bed profile for the test are
hðx; 0Þ ¼ 1:5þ 0:5xþ x2

uðx; 0Þ ¼ 1:0þ x

bðxÞ ¼ 0:5� 0:3x3

9>=>; ð79Þ
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Fig. 10. DRP solution for TT, CT and HEOC solvers for Dp ¼ 10:0. Thick full line is the reference solution obtained with the RCM
method.
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Fig. 11. Reference coordinate system for bed bðxÞ and free surface elevation Hðx; tÞ ¼ bðxÞ þ hðx; tÞ.
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In Fig. 12 we present solutions of the DRP upto fifth order (DRP 4) for both components of the unknown vec-
tor Q ¼ ½h; hu� � ½q1; q2�. As expected, by increasing the order, the DRP solution approximates the reference
solution very accurately.

5.5. Discussion of results

Recall that the main purpose of solving the Derivative Riemann Problem (DRP) is to provide a time-depen-
dent solution at each cell interface, from which a corresponding numerical flux can be found and used in the
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context of finite volume methods or discontinuous Galerkin finite element methods. However, before consid-
ering numerical methods we focus the discussion on the solution of the particular Cauchy problem, the DRP.
There are a number of aspects of the solution procedure of the DRP that warrant a detailed discussion.

One issue concerns the time evolution of the initial data, as done in the HEOC solver, and of the solution,
as done in the TT and CT solvers. We have observed that even when the initial condition consists of physically
admissible data, it is possible that the time evolution yields unphysical values, such as negative densities. This
appears to be more crucial for the HEOC solver, because it could happen that, at a given time, the time
evolved data contains unphysical values, which then the appropriate (classical) Riemann solver rejects, leading
to a failure of the scheme. The TT and CT solvers appear to be less sensitive to this problem. These two solvers
evolved in time the sought solution right at the interface. The corresponding time-dependent solution may still
include unphysical values. However, since these are then only used in the numerical integration to obtain the
flux it is possible that the scheme may continue to function.

Stationary discontinuities in the solution of the DRP represent another situation where differences between
the various solvers exist. The TT and CT solvers expand the solution at the interface starting from a leading
term computed a time t ¼ 0þ that dominates the evolution. In the presence of a stationary discontinuity at
t ¼ 0þ there are two possible choices for the leading term. For the first-order mode of the methods, it does
not matter which of the two states is taken, as these satisfy the Rankine–Hugoniot conditions and therefore
the respective fluxes are identical. For the higher-order version of the methods the situation is not clear. There
will be two different time expansions, depending on which side is taken as the leading term. This non-unique-
ness remains so even if the discontinuity moves for times t > 0. We have performed some numerical tests on
the effect of choosing from the two available expansions. There is an observable numerical difference but, at
least for the tests performed, it is very small and as time evolves it virtually vanishes. Still, this is an aspect of
the TT and CT methods that would benefit from further investigations. On the other hand, the HEOC method
is less sensitive to this problem. In particular, if the discontinuity positioned at the origin, at the early times,
then moves as time increases. The HEOC has the mechanism to capture this behaviour.

In general, boundary conditions are a challenging problem in the context of high-order numerical methods.
For example, for reflecting boundary conditions we solve an inverse Riemann problem, in the sense that we
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need to identify appropriate initial conditions such that the Riemann problem solution at the boundary repro-
duces what is physically sought, for example, zero velocity. To this purpose the HEOC solver appears more
attractive than the TT and CT solvers, as it is very simple to create, at each time, in the time evolution process,
the appropriate data states to match the desired condition.

Some comments regarding computational cost are in order. The HEOC solver needs a robust Riemann sol-
ver for each time-integration point s, within the time step 0 6 s 6 Dt. This can be time-consuming, as a robust
Riemann solver will in general be a non-linear Riemann solver. In addition, the HEOC solver requires the
development of two series expansions, one on each side of the interface. The TT solver, on the other hand,
requires a single expansion right at the interface. Moreover, in the TT and CT solvers, one uses a non-linear
Riemann solver only once, in order to compute the leading term reliably.

A rather surprising observation resulting from the present work is that, from the evidence available, all
three DRP solvers are unable to resolve correctly the DRP problem for the case of non-linear systems with
large jumps. This is different from the case of linear systems with constant coefficients, for which all three meth-
ods have been proved to be exact if the polynomial data are of finite degree. The situation is also different from
the scalar non-linear inhomogeneous case; in [46] it is (empirically) shown that the Toro–Titarev solver gives
the correct solution for initial jumps of any size. However, from the results of the present work, this property
does not seem to carry to non-linear systems.

On the other hand, the available experience, see for example [38,11], shows that the high-order ADER
schemes for non-linear systems based on the solution of the Derivative Riemann Problem are indeed capable
of reproducing the theoretically expected orders of accuracy. Obviously, the corresponding convergence rate
tests are performed for smooth solutions. However, even for smooth solutions the local reconstruction proce-
dure will necessarily produce jumps at the interfaces. Obviously these jumps are small in this case and are pos-
sibly within the range for which the existing DRP solvers yield the correct approximation.

6. ADER methods in one and two space dimensions

The purpose of this section is to briefly outline the construction of ADER high-order finite volume methods
in one and two space dimensions, using the solution of the DRP, and to illustrate the performance of such
numerical schemes.

First we solve the Euler equations of gas dynamics in two space dimensions using unstructured meshes and
study two problems. The first one is used to perform a convergence rates study and to show that the theoret-
ically expected high order of accuracy is actually verified in practice, at least for the chosen test problem. The
second test is used to illustrate the fact that the proposed schemes can be used to solve realistic problems
involving shock waves in complicated, non-cartesian geometries.

Then we solve the shallow water equations in one space dimension with a source term due to bottom ele-
vation. The purpose here is to address the issue of balance between flux and source terms near the steady state
in the context of ADER schemes. Through an example we show that the ADER schemes may be termed
asymptotically well-balanced; we also show through an example that the expected convergence rates are ver-
ified for balance laws.

6.1. Euler equations and finite volume schemes on triangular meshes

We solve the two-dimensional compressible Euler equations
o

ot
Qþ o

ox
FðQÞ þ o

oy
GðQÞ ¼ 0; ð80Þ
with
Q ¼

q

qu

qv

E

0BBB@
1CCCA; FðQÞ ¼

qu

qu2 þ p

quv

uðE þ pÞ

0BBB@
1CCCA; GðQÞ ¼

qv

quv

qv2 þ p

vðE þ pÞ

0BBB@
1CCCA ð81Þ
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and the polytropic equation of state, with the specific internal energy given as eðq; pÞ ¼ p
qðc�1Þ. Here q is density,

u; v are x and y components of velocity, p is pressure and E is the total energy, defined as
E ¼ qð1

2
ðu2 þ v2Þ þ eðq; pÞÞ. For the calculations of this paper we take c ¼ 1:4, as for air.

The schemes are constructed by considering a control volume T m in a two-dimensional domain, where T m is
an element of a conformal triangulation of the full spatial domain X. Writing equations (80) in divergence
form
Qt þrHðQÞ ¼ 0; HðQÞ ¼ ½FðQÞ;GðQÞ�T ð82Þ
and integrating over the triangle T m in space and time we obtain
Qnþ1
m ¼ Qn

m �
Dt
jT mj

X3

j¼1

Hn
m;j: ð83Þ
Here Hn
m;j is the numerical flux across the edge j of the triangle T m; jT mj is the area of triangle T m and Qn

m is the
cell average
Qn
m ¼

1

jT mj

Z
T m

Qðx; tnÞdx: ð84Þ
Once the numerical flux across the edges of the triangle are defined we obtain an explicit one-step numerical
method. The numerical flux Hn

m;j for edge j is obtained by integrating along the edge oT m;j in the time interval
½tn; tnþ1�,
Hn
m;j ¼

1

Dt

Z tnþ1

tn

Z
oT m;j

FðQðx; sÞÞ � ndx ds; ð85Þ
which is approximated as
Hn
m;j ¼

XNt

k¼1

xt
kjoT m;jj

XNx

h¼1

xx
hFðQðxh; tkÞÞ � n: ð86Þ
The integral (85) is calculated by a Gaussian quadrature of the desired order defining the quadrature points xh

and tk and the weights xx
h and xt

k, with xh 2 oT m;j and tk 2 ½tn; tnþ1�. At each spatial integration point xh we set
locally a Derivative Riemann Problem (1) to obtain the vector Qðxh; tkÞ ¼ QLRðtkÞ as in (3), see Fig. 13. QLRðsÞ
can be obtained by using any of the three DRP solvers studied in this paper. Recall that the basic information
available in finite volume schemes is a set of cell averages and therefore in order to produce a high-order rep-
resentation of the data in each cell we need to perform a reconstruction procedure to obtain the data for (1).
Here we apply the reconstruction procedure reported in [8], which extends the ideas of the ENO/WENO tech-
niques [20] combined with the sectorial stencil of [23] and the use of orthogonal basis functions from the dis-
continuous Galerkin methodology. See also [11].
Tm

Tj

τ=tn

τ=tn+1

F(Q(xh,τk)).n

xhx

τk

Fig. 13. Numerical flux computed at the Gaussian point x ¼ xh and t ¼ tk .
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6.1.1. Convergence rate studies

For the purpose of studying the convergence rates of the schemes we adopt the test problem proposed in
[19], which consists of a convected isentropic vortex computed in a square domain, with periodic boundary
conditions. The initial condition consists of a mean constant flow modified by an isentropic perturbation.
The initial mean flow is given by q ¼ 1; p ¼ 1 and ðu; vÞ ¼ ð1; 1Þ and the perturbation is given by
Table
Conve

Mesh

224
898
3618
14402
57694

Table
Conve

Mesh

224
898
3618
14402
57694

Table
Conve

Mesh

224
898
3618
14402
57694

Table
Conve

Mesh

224
898
3618
14402
57694
du ¼ � �
2p e

1
2ð1�r2Þy ;

dv ¼ �
2p e

1
2ð1�r2Þx;

dq ¼ ð1þ dT Þ
1

c�1 � 1;

dp ¼ ð1þ dT Þ
c

c�1 � 1;

dT ¼ � ðc�1Þ�2
8cp2 e1�r2

;

9>>>>>>>>=>>>>>>>>;
ð87Þ
where r2 ¼ x2 þ y2; � ¼ 5 (the vortex strength). The computational domain is ½�5; 5� � ½�5; 5� discretized by an
unstructured mesh of triangles.

Tables 5–8 give errors and convergence rates for the finite volume ADER schemes using the CT (present)
derivative Riemann problem solver. Schemes up to fifth order of accuracy are considered, on four levels of
5
rgence rates test: second order method

L1 error O1 L2 error O2 L1 error O1

2:47� 10 5:67� 10�1 4:43� 10�1

1:42� 10 0.85 3:42� 10�1 0.78 2:82� 10�1 0.69
3:43� 10�1 2.03 8:19� 10�2 2:04 8:71� 10�2 1.67
5:84� 10�2 2.56 1:37� 10�2 2:58 1:51� 10�2 2.53
7:65� 10�3 2.99 1:37� 10�3 3:11 4:22� 10�3 1.88

6
rgence rates test: third order method

L1 error O1 L2 error O2 L1 error O1

2:29� 10 5:23� 10�1 4:11� 10�1

7:35� 10�1 1.75 1:65� 10�1 1.77 1:30� 10�1 1.77
1:02� 10�1 2.82 2:49� 10�2 2.70 1:94� 10�2 2.71
1:60� 10�2 2.67 4:03� 10�3 2.63 2:84� 10�3 2.78
2:06� 10�3 3.02 5:21� 10�4 3.01 3:64� 10�4 3.03

7
rgence rates test: fourth order method

L1 error O1 L2 error O2 L1 error O1

2:14� 10 4:87� 10�1 3:88� 10�1

3:76� 10�1 2.68 6:23� 10�2 3.17 5:03� 10�2 3.14
1:67� 10�2 4.43 3:50� 10�3 4.10 3:87� 10�3 3.65
1:12� 10�3 3.91 2:25� 10�4 3.97 2:48� 10�4 3.97
6:84� 10�5 4.12 1:37� 10�5 4.12 1:61� 10�5 4.03

8
rgence rates test: fifth order method

L1 error O1 L2 error O2 L1 error O1

1:95� 10 4:60� 10�1 3:71� 10�1

3:86� 10�1 2.49 7:19� 10�2 2.85 6:99� 10�2 2.57
2:90� 10�2 3.69 7:23� 10�3 3.27 8:40� 10�3 3.02
1:31� 10�3 4.48 3:44� 10�4 4.40 2:12� 10�4 5.32
1:48� 10�5 6.60 3:85� 10�6 6.62 2:54� 10�6 6.52
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mesh refinement. Errors are measured in three norms L1; L2; L1 and the corresponding empirical orders of
accuracy are O1;O2 and O1. The expected orders of accuracy are reached in all cases.

6.1.2. Shock wave reflection problem
The purpose of this test is simply to illustrate the potential of the methods presented to solve realistic prob-

lems to high accuracy on complicated domains discretized with unstructured meshes. To this end we consider
the reflection of a shock wave from a solid body of triangular shape. The two-dimensional computational
domain is the region ½�0:65; 0:5� � ½�0:5; 0:5�, with a triangular solid body defined by the positions of its ver-
texes v1 ¼ ð�0:2; 0Þ; v2 ¼ ð0:1;�1=6Þ and v3 ¼ ð0:1; 1=6Þ. The incident shock wave has shock Mach number
Ms ¼ 1:3 and at time t ¼ 0 is placed at x ¼ �0:55, with initial conditions ahead of the shock given by
q ¼ 1:225ðkg= m3Þ; p ¼ 1:01325� 105ðPaÞ and zero velocity. Conditions behind are calculated from the Ran-
kine–Hugoniot conditions.

The mesh consist on 256580 triangles. Boundary conditions are as follows: left boundary at x ¼ �0:65 is
defined as inflow condition with the corresponding state defined by the Rankine–Hugoniot conditions; at
the right boundary at x ¼ 0:5 we set an outflow condition. The remaining boundaries are solid reflecting
boundaries.

For the results shown we used the third order ADER scheme along with the Castro–Toro solver for the
Derivative Riemann Problem. A CFL coefficient of Ccfl ¼ 0:45 has been used in the calculations. Figs. 14–
17 display Schlieren images for the density at times t ¼ 7:93� 10�4; t ¼ 1:41� 10�3; t ¼ 1:85� 10�3 and
t ¼ 2:20� 10�3 respectively. The initial (incident) shock wave propagates to the right, reflects from the trian-
gular solid object generating a circular reflection shock wave. Before the incident shock wave reaches the ver-
texes v2 and v3 of the triangle one can observe the formation of regular Mach reflection with well defined Mach
stems and slip surfaces on the top and bottom of the triangle. After the incident shock has reached the vertexes
v2 and v3 two symmetric expansions are created causing a diffraction of the Mach stems and two symmetric
vortices. See Fig. 18 for a three dimensional image of the density at time t ¼ 2:20� 10�3.

The main physical features of the flow resemble those of analogous problems for which there are experi-
mental results, see for example [30].
Fig. 14. Shock wave reflection problem. Schlieren image for density at time t ¼ 7:93� 10�4. Shock wave begins interaction with triangular
solid object.



Fig. 15. Shock wave reflection problem. Schlieren image for density at time t ¼ 1:41� 10�3. Shock wave reflects from edges of triangle and
generates regular Mach reflection patterns.

Fig. 16. Shock wave reflection problem. Schlieren image for density at time t ¼ 1:85� 10�3. Shock wave generates two expansion waves
over the corners of the triangle. Slip surfaces are produced from the interaction of the incident shock and the reflected shocks.
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6.2. ADER schemes and the well-balanced property

Here we solve the initial-boundary value problem for the one-dimensional shallow water equations with a
source term due to bed elevation (77) and (78). We solve the problem using the numerical methods presented
in Section 4, for x 2 ½�1; 1�; t > 0 with



Fig. 17. Shock wave reflection problem. Schlieren image for density at time t ¼ 2:20� 10�3. Two vortexes evolve behind triangle.
Expansion waves interact with shock and with boundaries.

Fig. 18. Shock wave reflection problem. Schlieren image for density at time t ¼ 2:20� 10�3. Three dimensional image for density.
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Hðx; 0Þ ¼ 1:5;

uðx; 0Þ ¼ 0:0;

bðxÞ ¼ 1
4

cosð4pxÞ þ cosðpxÞ:

9>=>; ð88Þ
The exact solution of this particular problem is identical to the initial conditions for all times; that is the free
surface remains horizontal and the particle velocity remains zero everywhere for all times. We apply ADER
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Fig. 19. Shallow water test problem: Comparison of numerical results with the exact solution. Left frame: first to third order ADER
schemes. Right frame: fourth and fifth order ADER schemes. Exact solution is Hðx; tÞ ¼ 1:5.

Table 9
Shallow water test problem: convergence rates for the fifth order (ADER-5) scheme

Mesh L1 error O1 L2 error O2 L1 error O1

50 9:87� 10�5 8:71� 10�5 1:49� 10�4

00 3:62� 10�6 4.77 3:13� 10�6 4.80 5:46� 10�6 4.77
200 1:06� 10�7 5.09 9:26� 10�8 5.08 1:61� 10�7 5.09
400 3:43� 10�9 4.96 2:96� 10�9 4.97 4:89� 10�9 5.04
800 1:16� 10�10 4:89 9:82� 10�11 4.91 1:50� 10�10 5.02
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finite volume numerical methods of orders one to fifth and evolve the solution for a fixed number 100 of time
steps. Numerical results are compared with the exact solution in Fig. 19. The left frame shows the results of the
first, second and third order schemes. The right frame of Fig. 19 shows the results for the fourth and fifth order
schemes.

The first order scheme (ADER-1) shows a large departure from the exact solution. The second order
ADER method (ADER-2) shows a reduced error, while the third order ADER scheme (ADER-3) gives vir-
tually the correct solution. The numerical results of the fourth and fifth order ADER schemes, shown on the
right frame of Fig. 19, match very well the correct solution. In summary, as the order of accuracy in the
ADER framework is increased one approaches the well-balanced property and one could state that the ADER
schemes are asymptotically well-balanced. We remark that neither ad-hoc procedures have been applied, nor
particular formulation of the equations have been implemented to obtain the displayed results.

In Table 9 we display the errors of the fifth order ADER solutions for four meshes using three norms. Note
that the expected convergence rates are obtained.

7. Summary and concluding remarks

In this paper we have studied three methods for solving the Derivative Riemann Problem for non-linear
systems of hyperbolic balance laws. The techniques have been illustrated for the compressible Euler equations
of gas dynamics and the shallow water equations with a source term. All three DRP solvers are assessed sys-
tematically on a range of local derivative Riemann problems. It is found that for linear problems all three solv-
ers are algebraically equivalent, as they are for non-linear systems with smooth initial conditions throughout.
For non-linear systems with discontinuous initial conditions the solvers tend to differ amongst themselves, and
from the reference solution, as the jump in the initial conditions at the origin increases. For small jumps all
solvers tend to give an accurate solution for short times, as one would expect.

We have also implemented the DRP solvers, locally, in the context of high-order finite volume numerical
methods of the ADER type. We have applied the numerical methods to solve the Euler equations in two
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space dimensions using unstructured meshes; schemes of upto fifth order of accuracy in space and time have
been constructed. The empirically obtained convergence rates correspond to the theoretically expected
orders of accuracy. An illustration of the potential capabilities of our high-order methods to solve realistic
problems on complex domains, using unstructured meshes, has also been given. We have also applied the
methods to the nonlinear shallow water equations with a geometric source term due to bed elevation.
Through this system we have discussed the so called well-balanced property in the context of the ADER
schemes. We observe that the ADER schemes may be termed asymptotically well-balanced in that the
well-balanced property is attained as the order of accuracy in the ADER schemes is increased, and without
any ad-hoc procedures.
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687.
[10] M. Dumbser, T. Schwartzkopff, C.D. Munz, Arbitrary high order finite volume schemes for linear wave propagation, Computational

Science and High Performance Computing II: Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 91, Springer,
2006, 129–144.
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[23] M. Käser, A. Iske, Adaptive ADER schemes for the solution of scalar non-linear hyperbolic problems, J. Comput. Phys. 205 (2005)

486–508.
[24] L. Tatsien, Y. Wenci. Boundary-value problems for quasi-linear hyperbolic systems, Duke University Mathematics Series, 1985.
[25] P. Le Floch, P.A. Raviart, An asymptotic expansion for the solution of the generalized riemann problem. Part 1: General theory,
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